Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(2-Hydroxy-3,5-diiodobenzylidene)-2methoxybenzohydrazide

San-Jun Peng^a* and Fen Zhang^b

^aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410014, People's Republic of China, and ^bSchool of Foreign Languages, Jiangsu University, Zhenjiang 212013, People's Republic of China

Correspondence e-mail: sanjunpeng@163.com

Received 14 May 2009; accepted 20 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.012 Å; R factor = 0.046; wR factor = 0.101; data-to-parameter ratio = 17.8.

The title compound, $C_{15}H_{12}I_2N_2O_3$, was synthesized by the condensation of equimolar amounts of 3,5-diiodosalicylaldehyde and 2-methoxybenzohydrazide in a methanol solution. There are two independent molecules, *A* and *B*, in the asymmetric unit. The dihedral angle between the two benzene rings is 30.2 (2)° for molecule *A* and 21.7 (2)° for molecule B. There are intramolecular O-H···N and N-H···O hydrogen bonds in each molecule. The crystal studied was an inversion twin with a 0.59 (3):0.41 (3) domain ratio.

Related literature

For background to Schiff bases and their complexes, see: Ali *et al.* (2005). For related structures, see: Yehye *et al.* (2008*a*,*b*); Jing *et al.* (2006); Ling *et al.* (2008).

Experimental

Crystal data C₁₅H₁₂I₂N₂O₃

 $M_r=522.07$

Orthorhombic, $Pna2_1$ a = 16.073 (2) Å b = 15.628 (2) Å c = 13.284 (1) Å V = 3336.8 (6) Å³

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.432, T_{max} = 0.469$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$vR(F^2) = 0.101$	independent and constrained
S = 1.00	refinement
7237 reflections	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
407 parameters	$\Delta \rho_{\rm min} = -0.56 \text{ e} \text{ Å}^{-3}$
3 restraints	Absolute structure: Flack (1983),
	3436 Friedel pairs
	Flack parameter: 0.59 (3)

Z = 8

Mo $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.20$ mm

26178 measured reflections

7237 independent reflections

4902 reflections with $I > 2\sigma(I)$

 $\mu = 3.78 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.053$

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} 04 - H4 \cdots N3 \\ 01 - H1 \cdots N1 \\ N2 - H2 \cdots O3 \\ N4 - H4B \cdots O6 \end{array}$	0.82	1.90	2.577 (8)	139
	0.82	1.92	2.568 (8)	136
	0.90 (3)	1.91 (6)	2.613 (8)	134 (8)
	0.89 (5)	1.98 (7)	2.629 (9)	128 (7)

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge Changsha University of Science and Technology for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2624).

References

- Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433– m434.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, 04087– 04088.
- Ling, C.-H., Chen, Y.-B., Huang, J.-A., Ji, C. & Liu, P. (2008). Acta Cryst. E64, 0948.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yehye, W. A., Ariffin, A. & Ng, S. W. (2008a). Acta Cryst. E64, 0960.
- Yehye, W. A., Ariffin, A. & Ng, S. W. (2008b). Acta Cryst. E64, 01452.

Acta Cryst. (2009). E65, o1410 [doi:10.1107/S160053680901914X]

N'-(2-Hydroxy-3,5-diiodobenzylidene)-2-methoxybenzohydrazide

S.-J. Peng and F. Zhang

Comment

Schiff bases such as hydrazides are known to act as versatile ligands in coordination chemistry (Ali *et al.*, 2005). We report herein the crystal structure of the new title benzohydrazide derivative (I), Fig. 1.

Compound (I) consists two independent molecules, A and B in the asymmetric unit. The dihedral angles between the two benzene rings are $30.2 (2)^{\circ}$ for A and $21.7 (2)^{\circ}$ for B, respectively. All the bond lengths are comparable to those observed in other similar compounds (Yehye *et al.*, 2008a,b; Jing *et al.*, 2006); Ling *et al.*, 2008). There are two intramolecular O–H···N and N–H···O hydrogen bonds (Table 1) in each molecule.

Experimental

2-Methoxybenzohydrazide (0.1 mmol, 16.6 mg) and 3,5-diiodosalicylaldehyde (0.1 mmol, 37.4 mg) were stirred at 318 K in methanol (10 ml) for 30 min. The filtrate was kept in air for a few days depositing colorless block-like crystals of (I).

Refinement

The crystal studied was an inversion twin with a 0.59 (3):0.41 (3) domain ratio. The number of Friedel pairs in the data set is 3436. Atoms H2 and H4B were located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with U_{iso} set to 0.08 Å². All H atoms bound to carbon and oxygen were refined using riding models with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å, $U_{iso} = 1.2U_{eq}$ (C) and $1.5U_{eq}$ (O and methyl C).

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.

N'-(2-Hydroxy-3,5-diiodobenzylidene)-2-methoxybenzohydrazide

Crystal data $C_{15}H_{12}I_2N_2O_3$ $M_r = 522.07$ Orthorhombic, $Pna2_1$ Hall symbol: P 2c -2n a = 16.073 (2) Å

 $F_{000} = 1968$ $D_x = 2.078 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4242 reflections $\theta = 2.3-24.5^{\circ}$

b = 15.628 (2) Å	$\mu = 3.78 \text{ mm}^{-1}$
c = 13.284 (1) Å	T = 298 K
$V = 3336.8 (6) \text{ Å}^3$	Block, colorless
Z = 8	$0.23\times0.20\times0.20~mm$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	7237 independent reflections
Radiation source: fine-focus sealed tube	4902 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
T = 298 K	$\theta_{\text{max}} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -20 \rightarrow 20$
$T_{\min} = 0.432, \ T_{\max} = 0.469$	$k = -19 \rightarrow 19$
26178 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.101$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$
7237 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
407 parameters	Extinction correction: none
3 restraints	Absolute structure: Flack (1983), 3436 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.59 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
13	0.40540 (3)	0.37109 (4)	0.59648 (6)	0.0789 (2)
I4	0.75672 (4)	0.29448 (4)	0.71249 (6)	0.0744 (2)
O4	0.4652 (3)	0.5530 (4)	0.6664 (5)	0.0592 (16)
H4	0.4752	0.5974	0.6971	0.071*
05	0.4563 (4)	0.7984 (3)	0.7103 (6)	0.0738 (18)
O6	0.7003 (4)	0.8732 (4)	0.7109 (6)	0.0745 (19)
N3	0.5663 (4)	0.6711 (4)	0.7246 (6)	0.0492 (17)
N4	0.5871 (4)	0.7542 (4)	0.7391 (6)	0.0552 (19)
C16	0.6078 (4)	0.5270 (5)	0.7135 (7)	0.0428 (18)
C17	0.5299 (5)	0.4972 (5)	0.6787 (6)	0.0430 (19)
C18	0.5183 (5)	0.4121 (5)	0.6577 (7)	0.052 (2)
C19	0.5820 (5)	0.3546 (5)	0.6660 (6)	0.048 (2)
H19	0.5740	0.2974	0.6493	0.057*
C20	0.6582 (5)	0.3831 (5)	0.6994 (6)	0.047 (2)
C21	0.6718 (5)	0.4676 (5)	0.7198 (7)	0.053 (2)
H21	0.7248	0.4856	0.7381	0.064*
C22	0.6248 (5)	0.6155 (5)	0.7341 (6)	0.047 (2)
H22	0.6777	0.6325	0.7541	0.057*
C23	0.5297 (5)	0.8171 (5)	0.7244 (6)	0.0452 (19)
C24	0.5589 (5)	0.9062 (5)	0.7306 (6)	0.0455 (19)
C25	0.6422 (5)	0.9340 (5)	0.7234 (7)	0.053 (2)
C26	0.6607 (7)	1.0209 (6)	0.7251 (8)	0.074 (3)
H26	0.7154	1.0391	0.7171	0.089*
C27	0.6000 (9)	1.0786 (6)	0.7381 (7)	0.085 (4)
H27	0.6137	1.1362	0.7431	0.102*
C28	0.5176 (8)	1.0543 (7)	0.7445 (7)	0.083 (3)
H28	0.4758	1.0950	0.7518	0.100*
C29	0.4986 (6)	0.9687 (6)	0.7397 (6)	0.061 (2)
H29	0.4430	0.9522	0.7428	0.073*
C30	0.7849 (5)	0.8953 (7)	0.6937 (8)	0.080 (3)
H30A	0.8055	0.9276	0.7499	0.119*
H30B	0.7890	0.9292	0.6336	0.119*
H30C	0.8173	0.8441	0.6860	0.119*
I1	0.81885 (3)	0.63308 (4)	0.55553 (6)	0.0747 (2)
12	0.46921 (4)	0.71070 (4)	0.43332 (6)	0.0793 (2)
01	0.7606 (3)	0.4525 (4)	0.4793 (5)	0.0549 (16)
H1	0.7425	0.4041	0.4890	0.082*
O2	0.7669 (3)	0.2033 (4)	0.4301 (7)	0.076 (2)
O3	0.5224 (3)	0.1360 (3)	0.4748 (5)	0.0639 (16)
N1	0.6578 (4)	0.3339 (4)	0.4300 (5)	0.0465 (16)
N2	0.6348 (4)	0.2499 (4)	0.4275 (6)	0.0540 (17)
C1	0.6177 (4)	0.4794 (5)	0.4342 (6)	0.0407 (18)
C2	0.6962 (5)	0.5073 (5)	0.4661 (6)	0.046 (2)
C3	0.7075 (4)	0.5914 (5)	0.4888 (6)	0.048 (2)
C4	0.6443 (5)	0.6517 (5)	0.4757 (6)	0.052 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H4A	0.6537	0.7094	0.4883	0.063*
C5	0.5680 (5)	0.6235 (5)	0.4438 (7)	0.053 (2)
C6	0.5548 (5)	0.5392 (5)	0.4207 (6)	0.0451 (19)
H6	0.5035	0.5219	0.3958	0.054*
C7	0.6016 (5)	0.3892 (5)	0.4185 (7)	0.048 (2)
H7	0.5486	0.3717	0.3996	0.057*
C8	0.6933 (5)	0.1877 (5)	0.4350 (7)	0.0462 (19)
C9	0.6631 (5)	0.0984 (5)	0.4467 (6)	0.044 (2)
C10	0.5797 (5)	0.0735 (5)	0.4667 (6)	0.047 (2)
C11	0.5616 (6)	-0.0131 (6)	0.4790 (7)	0.063 (2)
H11	0.5075	-0.0300	0.4938	0.075*
C12	0.6220 (8)	-0.0729 (6)	0.4696 (8)	0.077 (3)
H12	0.6084	-0.1304	0.4766	0.093*
C13	0.7045 (7)	-0.0501 (6)	0.4495 (7)	0.074 (3)
H13	0.7460	-0.0913	0.4437	0.089*
C14	0.7219 (6)	0.0346 (5)	0.4387 (6)	0.052 (2)
H14	0.7766	0.0503	0.4252	0.062*
C15	0.4365 (5)	0.1115 (6)	0.4888 (7)	0.066 (3)
H15A	0.4293	0.0880	0.5550	0.099*
H15B	0.4215	0.0694	0.4394	0.099*
H15C	0.4015	0.1609	0.4813	0.099*
H2	0.5807 (15)	0.237 (5)	0.435 (7)	0.080*
H4B	0.639 (2)	0.770 (5)	0.754 (7)	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
13	0.0459 (3)	0.0612 (4)	0.1295 (6)	-0.0160 (3)	-0.0114 (4)	-0.0033 (4)
I4	0.0618 (4)	0.0584 (4)	0.1029 (5)	0.0198 (3)	-0.0071 (4)	-0.0048 (4)
O4	0.034 (3)	0.054 (3)	0.089 (5)	-0.002 (3)	0.003 (3)	-0.001 (3)
O5	0.056 (4)	0.053 (4)	0.112 (5)	0.002 (3)	0.003 (4)	0.002 (4)
O6	0.048 (4)	0.067 (4)	0.108 (6)	-0.011 (3)	0.003 (4)	0.010 (4)
N3	0.041 (4)	0.044 (4)	0.063 (5)	-0.004 (3)	0.002 (4)	-0.006 (4)
N4	0.045 (4)	0.038 (4)	0.083 (6)	-0.001 (3)	-0.012 (4)	-0.012 (4)
C16	0.029 (4)	0.043 (4)	0.056 (5)	0.008 (3)	-0.007 (4)	0.006 (4)
C17	0.045 (5)	0.042 (4)	0.042 (5)	-0.003 (4)	0.009 (4)	-0.003 (4)
C18	0.038 (4)	0.056 (5)	0.060 (6)	-0.006 (4)	0.001 (4)	0.016 (5)
C19	0.057 (5)	0.040 (4)	0.047 (5)	-0.009 (4)	0.009 (4)	0.008 (4)
C20	0.046 (4)	0.045 (5)	0.051 (5)	0.009 (4)	0.003 (4)	-0.002 (4)
C21	0.039 (4)	0.056 (5)	0.064 (6)	-0.009 (4)	0.013 (4)	-0.005 (5)
C22	0.046 (5)	0.043 (5)	0.053 (6)	-0.009 (4)	-0.005 (4)	-0.009 (4)
C23	0.042 (5)	0.053 (5)	0.041 (5)	-0.006 (4)	0.004 (4)	-0.003 (4)
C24	0.047 (4)	0.050 (5)	0.039 (5)	-0.001 (4)	0.007 (4)	0.006 (4)
C25	0.056 (5)	0.054 (5)	0.048 (5)	-0.002 (4)	-0.005 (4)	0.006 (4)
C26	0.093 (7)	0.053 (6)	0.076 (7)	-0.026 (6)	-0.015 (6)	0.008 (6)
C27	0.152 (12)	0.038 (5)	0.065 (7)	-0.015 (7)	0.019 (7)	0.002 (5)
C28	0.111 (9)	0.064 (7)	0.075 (8)	0.026 (6)	0.023 (7)	0.003 (5)
C29	0.079 (6)	0.056 (6)	0.047 (6)	-0.003 (5)	0.005 (5)	0.003 (4)

C30	0.055 (6)	0.115 (8)	0.069 (7)	-0.009 (6)	0.000 (5)	0.016 (6)
I1	0.0441 (3)	0.0585 (4)	0.1215 (6)	-0.0146 (3)	-0.0043 (3)	-0.0101 (4)
I2	0.0761 (4)	0.0635 (4)	0.0985 (5)	0.0285 (3)	-0.0265 (4)	-0.0121 (4)
01	0.031 (3)	0.045 (3)	0.088 (5)	0.004 (2)	-0.002 (3)	0.000 (3)
O2	0.033 (3)	0.058 (4)	0.137 (6)	0.003 (3)	0.002 (4)	-0.004 (4)
O3	0.045 (3)	0.051 (3)	0.096 (5)	-0.003 (3)	0.005 (3)	0.000 (3)
N1	0.039 (4)	0.042 (4)	0.058 (4)	0.001 (3)	-0.001 (3)	-0.007 (4)
N2	0.041 (4)	0.039 (4)	0.082 (5)	-0.007 (3)	-0.004 (4)	-0.003 (4)
C1	0.039 (4)	0.037 (4)	0.047 (5)	-0.002 (3)	0.003 (4)	-0.007 (4)
C2	0.035 (4)	0.050 (5)	0.052 (5)	0.002 (4)	0.007 (4)	0.005 (4)
C3	0.038 (4)	0.051 (5)	0.053 (5)	-0.006 (4)	0.001 (4)	-0.005 (4)
C4	0.059 (6)	0.033 (4)	0.065 (6)	0.001 (4)	-0.004 (5)	-0.009 (4)
C5	0.055 (5)	0.048 (5)	0.057 (6)	0.003 (4)	-0.004 (4)	0.008 (5)
C6	0.040 (4)	0.061 (5)	0.035 (5)	0.008 (4)	-0.013 (4)	-0.004 (4)
C7	0.035 (4)	0.056 (5)	0.053 (5)	-0.012 (4)	-0.005 (4)	0.007 (4)
C8	0.043 (5)	0.037 (4)	0.058 (5)	0.002 (4)	0.007 (4)	-0.008 (4)
C9	0.052 (5)	0.045 (4)	0.034 (5)	0.008 (4)	0.005 (4)	0.000 (4)
C10	0.062 (5)	0.043 (5)	0.035 (5)	-0.013 (4)	-0.007 (4)	0.003 (4)
C11	0.070 (6)	0.053 (6)	0.064 (6)	-0.014 (5)	-0.014 (5)	0.001 (5)
C12	0.127 (10)	0.038 (5)	0.068 (7)	-0.007 (6)	-0.009 (6)	-0.002 (5)
C13	0.112 (9)	0.043 (5)	0.068 (7)	0.002 (6)	-0.018 (6)	0.001 (5)
C14	0.061 (5)	0.043 (5)	0.051 (5)	0.004 (4)	-0.001 (5)	-0.008 (4)
C15	0.054 (5)	0.080 (6)	0.065 (6)	-0.029 (5)	-0.002 (5)	-0.002 (5)

Geometric parameters (Å, °)

I3—C18	2.090 (8)	I1—C3	2.101 (7)
I4—C20	2.111 (7)	I2—C5	2.098 (8)
O4—C17	1.367 (9)	O1—C2	1.355 (8)
O4—H4	0.8200	O1—H1	0.8200
O5—C23	1.229 (9)	O2—C8	1.210 (9)
O6—C25	1.342 (10)	O3—C10	1.348 (10)
O6—C30	1.421 (10)	O3—C15	1.445 (9)
N3—C22	1.287 (10)	N1—C7	1.259 (10)
N3—N4	1.354 (8)	N1—N2	1.364 (8)
N4—C23	1.362 (10)	N2—C8	1.356 (9)
N4—H4B	0.89 (5)	N2—H2	0.90 (3)
C16—C21	1.389 (10)	C1—C6	1.389 (10)
C16—C17	1.414 (10)	C1—C2	1.400 (10)
C16—C22	1.437 (10)	C1—C7	1.448 (10)
C17—C18	1.371 (11)	C2—C3	1.360 (10)
C18—C19	1.366 (11)	C3—C4	1.396 (11)
C19—C20	1.377 (11)	C4—C5	1.370 (11)
С19—Н19	0.9300	C4—H4A	0.9300
C20—C21	1.365 (10)	C5—C6	1.369 (10)
C21—H21	0.9300	С6—Н6	0.9300
C22—H22	0.9300	С7—Н7	0.9300
C23—C24	1.472 (11)	C8—C9	1.485 (11)
C24—C29	1.382 (12)	C9—C14	1.379 (10)

C24—C25	1.412 (11)	C9—C10	1.421 (11)
C25—C26	1.390 (12)	C10—C11	1.393 (11)
C26—C27	1.339 (15)	C11—C12	1.353 (13)
С26—Н26	0.9300	C11—H11	0.9300
C27—C28	1.381 (15)	C12—C13	1.399 (14)
С27—Н27	0.9300	C12—H12	0.9300
C28—C29	1.374 (12)	C13—C14	1.360 (12)
C28—H28	0.9300	С13—Н13	0.9300
С29—Н29	0.9300	C14—H14	0.9300
С30—Н30А	0.9600	C15—H15A	0.9600
С30—Н30В	0.9600	C15—H15B	0.9600
С30—Н30С	0.9600	С15—Н15С	0.9600
C17—O4—H4	109.4	C2—O1—H1	109.5
$C_{25} - C_{6} - C_{30}$	120.9 (7)	C10-O3-C15	118.1 (6)
C22—N3—N4	116 9 (7)	C7 - N1 - N2	1177(7)
N3—N4—C23	120.3 (7)	C8—N2—N1	120.1 (6)
N3—N4—H4B	121 (6)	C8—N2—H2	120.6
C23—N4—H4B	118 (6)	N1—N2—H2	118 (6)
C21—C16—C17	117.1 (7)	C6—C1—C2	119.0 (7)
$C_{21} - C_{16} - C_{22}$	119.4 (7)	C6-C1-C7	120.5 (7)
C17 - C16 - C22	1233(7)	C_{2} C_{1} C_{7}	120.5(7)
04-017-018	119 5 (7)	01 - C2 - C3	120.3(7) 1187(7)
04-C17-C16	1201(7)	01 - 02 - 01	122.0(7)
C18 - C17 - C16	120.1(7) 120.4(7)	C_{3} C_{2} C_{1}	119.2 (7)
C19-C18-C17	121.3 (8)	$C_2 - C_3 - C_4$	121.8 (7)
C19 - C18 - I3	118 7 (7)	$C_2 = C_3 = U_1$	120.4 (6)
C17—C18—I3	119.6 (6)	C4—C3—I1	117.6 (6)
C18—C19—C20	118.7 (8)	C5-C4-C3	118.2 (8)
С18—С19—Н19	120.7	C5—C4—H4A	120.9
$C_{20} - C_{19} - H_{19}$	120.7	C3—C4—H4A	120.9
$C_{21} - C_{20} - C_{19}$	121.3 (8)	C6-C5-C4	121.2 (8)
$C_{21} - C_{20} - I_{4}$	119.9 (6)	C6—C5—I2	119.5 (6)
C19—C20—I4	118.8 (6)	C4—C5—I2	119.3 (6)
$C_{20} = C_{21} = C_{16}$	121.0 (8)	C5-C6-C1	1204(7)
$C_{20} = C_{21} = H_{21}$	119 5	С5—С6—Н6	119.8
C16—C21—H21	119.5	C1—C6—H6	119.8
N3-C22-C16	119.5 (7)	N1-C7-C1	121.5 (8)
N3—C22—H22	120.3	N1—C7—H7	119.2
C16-C22-H22	120.3	С1—С7—Н7	119.2
05—C23—N4	120.1 (7)	02—C8—N2	121.9 (7)
05-C23-C24	122.6 (7)	02	121.0 (7)
N4—C23—C24	117.3 (7)	N2—C8—C9	117.1 (7)
C29—C24—C25	117.0 (8)	C14—C9—C10	117.6 (8)
C29—C24—C23	116.7 (7)	C14—C9—C8	116.6 (7)
C25-C24-C23	126.2 (7)	C10—C9—C8	125.9 (7)
O6—C25—C26	123.0 (8)	O3—C10—C11	123.5 (8)
O6—C25—C24	116.7 (7)	O3—C10—C9	117.4 (7)
C26—C25—C24	120.2 (9)	C11—C10—C9	119.0 (8)
C27—C26—C25	120.3 (10)	C12-C11-C10	120.7 (9)
	× /		· /

С27—С26—Н26	119.9	C12—C11—H11	119.7
С25—С26—Н26	119.9	C10-C11-H11	119.7
C26—C27—C28	121.5 (9)	C11—C12—C13	121.5 (9)
С26—С27—Н27	119.3	C11—C12—H12	119.3
С28—С27—Н27	119.3	C13—C12—H12	119.3
C29—C28—C27	118.6 (10)	C14—C13—C12	117.5 (10)
C29—C28—H28	120.7	C14—C13—H13	121.2
С27—С28—Н28	120.7	С12—С13—Н13	121.2
C28—C29—C24	122.4 (9)	C13—C14—C9	123.7 (9)
С28—С29—Н29	118.8	C13—C14—H14	118.1
С24—С29—Н29	118.8	C9—C14—H14	118.1
O6—C30—H30A	109.5	O3—C15—H15A	109.5
O6—C30—H30B	109.5	O3—C15—H15B	109.5
H30A—C30—H30B	109.5	H15A—C15—H15B	109.5
O6—C30—H30C	109.5	O3—C15—H15C	109.5
H30A—C30—H30C	109.5	H15A—C15—H15C	109.5
H30B-C30-H30C	109.5	H15B—C15—H15C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O4—H4…N3	0.82	1.90	2.577 (8)	139
O1—H1…N1	0.82	1.92	2.568 (8)	136
N2—H2···O3	0.90 (3)	1.91 (6)	2.613 (8)	134 (8)
N4—H4B…O6	0.89 (5)	1.98 (7)	2.629 (9)	128 (7)

Fig. 1

